Experiment 3 Synthesis and Column Chromatography of 3-Methylbutyl Acetate

Title: Experiment 3: Synthesis and Column Chromatography of 3-Methylbutyl Acetate

Purpose: To synthesize and purify 3-methylbutyl acetate through equilibrium reaction of 3-methyl-1-butanol and acetic acid to 3-methylbutyl acetate and water with use of catalyst of para-toluenesulfonic acid.

Pre-lab:

<table>
<thead>
<tr>
<th>Compound</th>
<th>Molecular weight</th>
<th>Hazards</th>
<th>Density</th>
<th>Mp/bp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Para-toluene sulfonic acid</td>
<td>190.22</td>
<td>Irritating to eyes, skin, and respiratory system.</td>
<td></td>
<td>mp: 103-10 6C</td>
</tr>
<tr>
<td>Glacial acetic acid</td>
<td>60.05</td>
<td>Corrosive, flammable, harmful with inhalation, contact with skin or eyes, and ingestion</td>
<td>1.049g/mL at 25C</td>
<td>Mp: 16.2 C</td>
</tr>
<tr>
<td>3-methyl-1-butanol (isopentanol)</td>
<td>88.15</td>
<td>Harmful with inhalation, contact with skin or eyes, and ingestion</td>
<td>0.809g/mL at 25C</td>
<td>Mp: -11 7C Bp: 130C</td>
</tr>
<tr>
<td>3-methyl butyl acetate (isopentyl acetate)</td>
<td>130.18</td>
<td>Flammable, Harmful with inhalation, contact with skin or eyes, and ingestion</td>
<td>0.876g/mL at 25 C</td>
<td>Mp: -78 C Bp: 142 C</td>
</tr>
<tr>
<td>Acetone</td>
<td>58.08</td>
<td>Highly flammable, Harmful with inhalation, contact with skin or eyes, and ingestion</td>
<td>0.791g/mL at 25C</td>
<td>Mp: -94 C</td>
</tr>
</tbody>
</table>

1. If the 3-methyl-1-butanol was from an older bottle and contained a significant amount of water from air absorption, then less of the product would form. Often times water does not affect equilibrium when dealing with acid base reactions; however, in this case water is taken into
account and does affect the equilibrium. By Le Chatelier’s Principle, when adding additional water (product side) it will shift the equilibrium to the left toward the reactants.

2. Para-toluene sulfonic acid is the catalyst in this reaction. Changing the concentration of the catalyst will not affect the equilibrium position. It will only affect the rate of reaction.

3. 3-methylbutyl acetate has a boiling point of 142°C while 3-methyl-1-butanol has a boiling point of 130°C. The compound with the lower boiling point (3-methyl-1-butanol) will convert to gas phase first and be separated from the mixture before 3-methylbutyl acetate during gas chromatography.

Procedure:

Day 1
1. Put 50mg of para-toluene sulfonic acid 5mL microscale round bottom flask.
2. Estimate masses of 3-methyl-1-butanol and glacial acetic acid.
3. Weigh and record 5mL round bottom flask with para-toluene sulfonic acid.
4. Add 3-methyl-1-butanol. Find mass.
5. Repeat for glacial acetic acid.
6. Add 3 Teflon boiling chips.
7. Assemble reflux apparatus.
9. Fill bottle with sand just to cover the bottom.
10. Turn on hot plate until vapor condenses.
11. Complete reflux to instructor’s designated time.
12. Contents of round bottom flask are put into microscale.
13. Place centrifuge with 1mL water into rack.
14. Gradually add 2mL of sodium bicarbonate and swirl.
15. Remove aqueous layer and remaining is unreacted 3-methyl-1-butanol and 3-methylbutyl acetate.
16. Add sodium sulfate powder to tube and keep for day 2.

Day 2
1. Pipette filter product.
2. Add 1mL dichloromethane to pipette filter.
3. Collect filtrate in scintillation vial and label as “crude product”.
4. Setup chromatography.
5. Put silica gel into 50mL Erlenmeyer flask.
6. Add petroleum ether until have free-flowing slurry.
7. Load sample into column and collect 15mL hexane eluent.
8. Switch solvent on column to 10% dichloromethane in petroleum ether.
9. Collect 5mL in 5 test tubes.
10. Spot tiny amount of eluent onto filter paper and note odor.
11. Get GC analysis on first and last fractions that contain 3-methylbutyl acetate.
12. Get tare weight of 125mL Erlenmeyer filter flask.
13. Remove solvent from filter flask.
14. Record weight of flask with ester.

Data/Results:

<table>
<thead>
<tr>
<th>Samples</th>
<th>Mole</th>
<th>Desired Grams</th>
<th>Measured Grams</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-methylbutyl acetate</td>
<td>88.15</td>
<td>1.0578g</td>
<td>1.167g</td>
</tr>
<tr>
<td>3-methyl-1-butanol</td>
<td>110.19</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figures:

Figure 1: GC Banana Ester

This is the control GC of 3-methylbutyl acetate provided by instructor. It has two peaks at 1 minute (area=1219665, height=604273) and 3 minutes (area=987818, height=198533). Our synthesized 3-methylbutyl acetate will be compared to this GC as a tool to determine how successful the synthesis was.
Lab period 2

3-methylbutyl has strongest banana smell on the first vial. 5 is were we are measuring when the banana smell fades.

Gas Chromatography Results:

Figure 2: GC 3-methylbutyl acetate

GC of 3-methyl-1-butanol provided by instructor. Peak at one minute (area = 1771386, height = 680123) and at 1.6 minutes (area = 2858, height = 29906). This serves as another control to compare our experimental results. A good 3-methylbutyl acetate will have a similar GC, because this was a reactant and was supposed to be separated by the column.

Figure 3: GC Crude

GC of crude sample before running through column. The first peak originates from the presence of both 3-methyl-1-butanol and 3-methylbutyl acetate. The second peak is from 3-methyl-1-butanol only. The third peak is from 3-methylbutyl acetate. By comparing this GC to Figure 1 and Figure 2, we can conclude that the crude contains both 3-methyl-1-butanol and 3-methylbutyl acetate.

Figure 4: GC Third Sample

This is the third eluent from the column which had banana odor. The results are not ideal since the only large peak is at one minute. It is strange that the second and third peak (1.6 minutes and 3 minutes) are so tiny, because they each originate from a different compound. The first peak is very large, but does not provide very conclusive data since it could be from either compound.

Figure 5: Sixth Sample

This is the sixth eluent from the column which had no banana odor. These are from the same sample as the other GCs. The results are also strange because there is no large peak at one minute.
provide very conclusive data since it could be from either compound.

Figure 5: Sixth Sample This is the sixth eluent from the column which had no banana odor. These results are also strange because third peak would suggest that there would be more banana than the third eluent; however, our smelling of the samples contradicts this. It seems as though the amount of both 3-methylbutyl acetate and 3-methyl-1-butanol might have increased due to the more defined second and third peaks; however, the height and total area have decreased from the third eluent.

Product weight after slurpie 0.9956g
Ratio: Area of 3-methylbutyl acetate/ area of 3-me-1-boh * .786

Post-Laboratory Questions:
1. \[\text{Ratio} = \frac{\text{Area of 3-methylbutyl acetate}}{\text{Area of 3-me-1-boh}} \times 0.786 = 0.666 \]

2. Figure 4 represents the eluent that had the strongest banana smell and Figure 5 represents the eluent that no longer had the banana smell. When comparing the GC to the controls (Figure 1 and 2), we can compare purity of our eluents. 3-methylbutyl acetate has two distinguished peaks at 1 minute and 3 minutes from our control. 3-methyl-1-butanol also has two peaks at 1 minute and 1.6 minutes. Our crude sample (Figure 3) clearly contains both substances with defined peaks at 1 minute, 1.6 minutes, and 3 minutes. The results of the 3rd and 6th eluent (figures 4 and 5 respectively), were not perfect. The third eluent has a large first peak, but we cannot determine which compound caused this since they both occur at 1 minute. The other two peaks are so infinitesimal that they are barely worth mentioning. Ideally, there would be a large peak at 3 minutes indicating presence of 3-methylbutyl, but this is not the case. In the sixth eluent, similar results are found, except the tiny peaks at 1.6 minutes and 3 minutes become larger. Because the peaks at 1.6 and 3 minutes are approximately at the same height in both Figure 4 and 5, I cannot conclude if we were successful in purifying 3-methylbutyl.

3. \[\text{Ksp} = 3 \cdot \frac{[3\text{-methylbutyl acetate}][\text{glacial acetic acid}]}{[3\text{-methyl-1-butanol}]} \]

The yield is very low; however, we only slurried one small portion of eluent of the entire column. If a larger portion of the eluent from the column was slurried then we would obtain a higher percent yield.

4. | Group | Mmole 3-methyl-1-butanol | Mmole Glacial Acetic Acid | Obtained | Calculated Ratio |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>6.0</td>
<td>6.0</td>
<td>4.38</td>
<td>2.96</td>
</tr>
<tr>
<td>B</td>
<td>6.0</td>
<td>12.0</td>
<td>9.4</td>
<td>7.14</td>
</tr>
<tr>
<td>C</td>
<td>6.0</td>
<td>6.0</td>
<td>0.030</td>
<td>28.7</td>
</tr>
<tr>
<td>D</td>
<td>12.0</td>
<td>6.0</td>
<td>0.666</td>
<td>7.11</td>
</tr>
</tbody>
</table>

\[\begin{align*} \text{Group A):} & \quad \frac{3x^2 - 3.7x + 1.08}{0} = 0 \quad \Rightarrow x = 3.74 \text{ or } 7.14 \\ \text{Group B):} & \quad \frac{x}{(6-x)(12-x)} = 3 \\ & \quad 216 - 54x + 3x^2 = x \\ & \quad 3x^2 - 55x + 216 = 0 \\ & \quad x = \frac{55 \pm \sqrt{433}}{6} = 5.70 \\ \text{Ratio:} & \quad \frac{5.70}{3} = 1.89 \times 0.786 = 14.9 \\ \text{Group C):} & \quad x = 3 \\ & \quad \text{Ratio: } \frac{3}{3} = 1 \\ \end{align*} \]
Group C)

Group D)

Groups A, B, and D seem to have reasonable results based on my calculations. The K_{eq} used for calculations was given at 3, which is probably a very approximate K_{eq}. I also assumed that this reaction is a 1:1 ratio, and my calculations would be incorrect if it was not a 1:1 ratio. The calculations seem to be consistent with the majority of the results (exception with group C), so I believe it is a 1:1 ratio. See table above to see calculated ratio results.

By increasing the amount of 3-methyl-1-butanol, the ratio will be decreased. This makes sense because the ratio is 3-methylbutyl acetate divided by 3-methyl-1-butanol. By adding additional 3-methyl-1-butanol, the ratio will be smaller because it is being divided by a larger number.

By Le Chatlier’s principle, when additional reactant is added, the equilibrium will shift toward the products. The results are consistent with Le Chatlier’s principle, because when more reactant was used in a group, the ratio was higher because the product is in the numerator of the ratio. Group C’s data did not follow this trend, so instead I used my calculated ratio using ICE and K_{eq} which followed the trend.

The only anomaly was group D, in which it was divided by a very large 3-methyl-1-butanol, creating a very small ratio.

Conclusion:

Our ratio using GC area under the curve was .666 which compared nicely to a .711 calculation based on ICE and K_{eq}. The GC results were not optimal, which made it difficult to determine what was present in each eluent. There were also some issues with our column when the sand shifted from adding liquids to the top.